Grupo de personas que comparten una
pasión por algo que saben como hacer, y que interactúan regularmente con el objetivo de aprender como hacerlo mejor – Etienne Wenger
Grupo de individuos que se relacionan con otros para un fin determinado, caracterizado por la existencia de flujos de información.
Las comunidades están construidas por las conexiones de sus integrantes.
Necesitamos conocer la conectividad de nuestra comunidad para planificar intervenciones enfocadas y efectivas con el objetivo de:
Somos un grupo de gente cuya pasión es la investigación abierta y reproducible para todes, construida por todes. Sabemos sobre este tema y contribuimos a este objetivo creando infraestructura técnica y social.

Escribir para el blog

Revisar un paquete

Mantener un paquete

Hablar en una Comm Call

Convertirte en campeón/a

Ser anfitrión de un encuentro

N:autor. E:coautoría

N:autor, editar, revisar. E:peer-review

N:desarrollo. E:co desarrollo.

N:disertante. E:panel, coorganización

N:tutores, mentoreade. E:mentorías

N:participantes. E: coorganización, asistentes

Webpage

GitHub, base de datos

GitHub,r-universe

Webpage

Webpage, base de datos

Webpage
file_list <- fs::dir_ls(path = "content/blog/", recurse = TRUE, type = "file", glob = "*.md") blog_post <- tibble(fecha = character(), titulo = character(), autor = character(), year = character(), contribution_type = character()) for (documento in file_list){ doc <- rmarkdown::yaml_front_matter(input = file.path(documento)) blog_post <- tibble::add_row(blog_post, fecha = doc$date, titulo = doc$title, autor = doc$author, year = as.character(year(date(doc$date))), tipo_contribucion = 'blog post' ) } write_csv(datos, "blog_post_authors_2023.csv") # ;-)file_list <- fs::dir_ls(path = "content/blog/", recurse = TRUE, type = "file", glob = "*.md") blog_post <- tibble(fecha = character(), titulo = character(), autor = character(), year = character(), contribution_type = character()) for (documento in file_list){ doc <- rmarkdown::yaml_front_matter(input = file.path(documento)) blog_post <- tibble::add_row(blog_post, fecha = doc$date, titulo = doc$title, autor = doc$author, year = as.character(year(date(doc$date))), tipo_contribucion = 'blog post' ) } write_csv(datos, "blog_post_authors_2023.csv") # ;-)file_list <- fs::dir_ls(path = "content/blog/", recurse = TRUE, type = "file", glob = "*.md") blog_post <- tibble(fecha = character(), titulo = character(), autor = character(), year = character(), contribution_type = character()) for (documento in file_list){ doc <- rmarkdown::yaml_front_matter(input = file.path(documento)) blog_post <- tibble::add_row(blog_post, fecha = doc$date, titulo = doc$title, autor = doc$author, year = as.character(year(date(doc$date))), tipo_contribucion = 'blog post' ) } write_csv(datos, "blog_post_authors_2023.csv") # ;-)file_list <- fs::dir_ls(path = "content/blog/", recurse = TRUE, type = "file", glob = "*.md") blog_post <- tibble(fecha = character(), titulo = character(), autor = character(), year = character(), contribution_type = character()) for (documento in file_list){ doc <- rmarkdown::yaml_front_matter(input = file.path(documento)) blog_post <- tibble::add_row(blog_post, fecha = doc$date, titulo = doc$title, autor = doc$author, year = as.character(year(date(doc$date))), tipo_contribucion = 'blog post' ) } write_csv(datos, "blog_post_authors_2023.csv") # ;-)file_list <- fs::dir_ls(path = "content/blog/", recurse = TRUE, type = "file", glob = "*.md") blog_post <- tibble(fecha = character(), titulo = character(), autor = character(), year = character(), contribution_type = character()) for (documento in file_list){ doc <- rmarkdown::yaml_front_matter(input = file.path(documento)) blog_post <- tibble::add_row(blog_post, fecha = doc$date, titulo = doc$title, autor = doc$author, year = as.character(year(date(doc$date))), tipo_contribucion = 'blog post' ) } write_csv(datos, "blog_post_authors_2023.csv") # ;-)file_list <- fs::dir_ls(path = "content/blog/", recurse = TRUE, type = "file", glob = "*.md") blog_post <- tibble(fecha = character(), titulo = character(), autor = character(), year = character(), contribution_type = character()) for (documento in file_list){ doc <- rmarkdown::yaml_front_matter(input = file.path(documento)) blog_post <- tibble::add_row(blog_post, fecha = doc$date, titulo = doc$title, autor = doc$author, year = as.character(year(date(doc$date))), tipo_contribucion = 'blog post' ) } write_csv(datos, "blog_post_authors_2023.csv") # ;-)file_list <- fs::dir_ls(path = "content/blog/", recurse = TRUE, type = "file", glob = "*.md") blog_post <- tibble(fecha = character(), titulo = character(), autor = character(), year = character(), contribution_type = character()) for (documento in file_list){ doc <- rmarkdown::yaml_front_matter(input = file.path(documento)) blog_post <- tibble::add_row(blog_post, fecha = doc$date, titulo = doc$title, autor = doc$author, year = as.character(year(date(doc$date))), tipo_contribucion = 'blog post' ) } write_csv(datos, "blog_post_authors_2023.csv") # ;-)

blog_post_net <- blog_post |> group_by(titulo, year) |> filter(n() > 1) |> summarise(as.data.frame(t(combn(autor, 2)))) |> select(titulo, year, from=V1, to=V2)blog_post_net <- blog_post |> group_by(titulo, year) |> filter(n() > 1) |> summarise(as.data.frame(t(combn(autor, 2)))) |> select(titulo, year, from=V1, to=V2)blog_post_net <- blog_post |> group_by(titulo, year) |> filter(n() > 1) |> summarise(as.data.frame(t(combn(autor, 2)))) |> select(titulo, year, from=V1, to=V2)blog_post_net <- blog_post |> group_by(titulo, year) |> filter(n() > 1) |> summarise(as.data.frame(t(combn(autor, 2)))) |> select(titulo, year, from=V1, to=V2)blog_post_net <- blog_post |> group_by(titulo, year) |> filter(n() > 1) |> summarise(as.data.frame(t(combn(autor, 2)))) |> select(titulo, year, from=V1, to=V2)blog_post_net <- blog_post |> group_by(titulo, year) |> filter(n() > 1) |> summarise(as.data.frame(t(combn(autor, 2)))) |> select(titulo, year, from=V1, to=V2)
the_nodes <- blog_post %>% select(author) %>% unique() the_edges <- blog_post_net %>% select(from, to, year) bp_net <- tbl_graph(nodes = the_nodes, edges = the_edges, directed = FALSE)the_nodes <- blog_post %>% select(author) %>% unique() the_edges <- blog_post_net %>% select(from, to, year) bp_net <- tbl_graph(nodes = the_nodes, edges = the_edges, directed = FALSE)the_nodes <- blog_post %>% select(author) %>% unique() the_edges <- blog_post_net %>% select(from, to, year) bp_net <- tbl_graph(nodes = the_nodes, edges = the_edges, directed = FALSE)the_nodes <- blog_post %>% select(author) %>% unique() the_edges <- blog_post_net %>% select(from, to, year) bp_net <- tbl_graph(nodes = the_nodes, edges = the_edges, directed = FALSE)






Esta charla está en https://github.com/yabellini/rOpenSciLatinR2023